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Abstract

Propagated image segmentation is the problem of utilizing the existing segmenta-

tion of an image for obtaining a new segmentation of, either a neighboring image

in a sequence, or the same image but in different scales. We name these two cases

as the inter-image propagation and the intra-image propagation respectively. The

inter-image propagation is particularly important to material science, where efficient

and accurate segmentation of a sequence of 2D serial-sectioned images of 3D mate-

rial samples is an essential step to understand the underlying micro-structure and

related physical properties. For natural images with objects in different scales, the

intra-image propagation, where segmentations are propagated from the finest scale

to coarser scales, is able to better capture object boundaries than single-shot segmen-

tations on a fixed image scale.

In this work, we first propose an inter-image propagation method named Edge-

Weighted Centroid Voronoi Tessellation with Propagation of Consistency Constraint

(CCEWCVT) to effectively segment material images. CCEWCVT segments an im-

age sequence by repeatedly propagating a 2D segmentation from one slice to another,

and in each step of this propagation, we apply the proposed consistency constraint in

the pixel clustering process such that stable structures identified from the previous

slice can be well-preserved. We further propose a non-rigid transformation based

association method to find the correspondence of propagated stable structures in the

next slice when the inter-image distance becomes large. We justify the effective-

ness of the proposed CCEWCVT method on 3D material image sequences, and we

compare its performance against several state-of-the-art 2D, 3D, propagated segmen-
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tation methods. Then for the intra-image propagation, we propose a superpixel con-

struction method named Hierarchical Edge-Weighted Centroidal Voronoi Tessellation

(HEWCVT) to accurately capture object boundaries in natural images. We model

the problem as a multilevel clustering process: superpixels in one level are clustered

to obtain larger size superpixels in the next level. The clustering energy involves

both color similarities and the proposed boundary smoothness of superpixels. We

further extend HEWCVT to obtain supervoxels on 3D images or videos. Both quan-

titative and qualitative evaluation results on several standard datasets show that the

proposed HEWCVT method achieves superior or comparable performances to other

state-of-the-art methods.
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Chapter 1

Introduction

1.1 Research Motivation

Given high resolution and complex 2D/3D images with millions and millions pix-

els/voxels, segmentation methods that directly obtain single segmentation on the

whole image are not as efficient as being applied on small images. Due to its efficiency,

propagated image segmentation methods have attracted much attention recently. Ef-

ficient segmentation on a new image is achieved by utilizing existing segmentations

from reference images. Based on the relationship between the new image and the

reference images, we divide propagated segmentation problem into two categories:

1) Inter-image propagation where reference images and new images are from a same

sequence of correlated images. Existing segmentations are propagated and utilized

along the sequence. The final goal is to obtain segmentations for each image in the

sequence. 2) Intra-image propagation where reference images and new images are the

same but in different representations, e.x., different scales. In this work we focus on

intra-image propagation among different scales. For each category, we analyze their

importance in real applications below respectively.

Since 3D images can be serial-sectioned and represented by 2D image sequences,

inter-image propagation is particularly important to 3D image segmentation because

of its efficiency. In this work we choose 3D superalloy material image segmentation as

an application and address the importance of inter-image propagated segmentation

on it.

1
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Figure 1.1: Microscopic grain images and segmentation. From left to right: original
image slices with ground-truth grain boundaries, segmentation using a 2D method,
segmentation using a 3D method, and segmentation using the proposed algorithm,
respectively.

In material science, superalloy materials have been widely used in both commer-

cial and military applications [35, 40] because of their excellent tensile strength and

resistance to creep under high temperatures [49]. Such physical properties are mainly

determined by the underlying micro-structures of superalloy samples, which are usu-

ally in the form of set of grains [35]. These grains are too small to be visible to

human vision. In practice, high-performance electron microscopy is usually used to

get the 2D surface image of the material sample [35]. To better identify the micro-

structures, various chemicals, like acids, may be applied to the material surface to

highlight the grain boundaries. In addition, to achieve the underlying 3D grain struc-

tures, a serial-sectioning technique is usually applied to unveil the internal structure

of the material to the microscopy [49]. Example image slices from a 2D serial sec-

2
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Figure 1.2: Sample results of the proposed HEWCVT method on 2D images: the
original image (left column), superpixels constructed on the finest level of hierarchy
(middle column) and superpixels constructed on the highest level of hierarchy (right
column). Superpixels of objects are visualized by colorful patches. The hierarchical
nested relations among superpixels can be easily verified.

tion of a 3D superalloy material sample are shown in the first column of Figure 1.1

where each cell is a grain. In order to reveal grain structures from such 2D image

slices, material scientists must manually annotate the grain boundaries on each of

the 2D slices, and then correspond 2D grains across all the slices to reconstruct the

3D grain structure. This manual annotation process is tedious, time-consuming, and

often prone to error, given a large number of grains and serial-sectioned slices in a

high-resolution 3D superalloy image. This calls for efficient and effective automatic

grain segmentation, which not only captures the grain boundaries accurately, but also

completes quickly. We address this problem by proposing an inter-image propagated

segmentation method on the sequence of 2D slices.

For the intra-image propagation in different image scales, the advantage is that it

3
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allows us to capture and discover object boundaries under different scales. Further,

we can represent the correspondence among segmentations under different scales as

a nested hierarchy structure. In this work, we model the intra-image propagated

segmentation as constructing multiscale superpixels. Many vision applications require

the use of multiscale superpixels with different coarse levels to better infer the high-

level structural information [20, 25, 28, 41, 52, 46, 23]. Multiscale superpixels can

usually be obtained by varying certain configurations, such as the number of or the

average size of superpixels. However, simply varying these configurations may not

generate multiscale superpixels with boundary consistency, i.e., the boundaries in a

coarser level may not be drawn from the boundaries in a finer level. This way, the

superpixels in different scales may not show a hierarchical nested relations, which is

important for inferring high-level structural information [25, 11, 41, 20, 28]. Thus,

we would like to address this problem by using intra-image propagated method for

constructing multiscale superpixels.

1.2 Research Contribution

This work focuses on developing propagated methods for efficient image segmentation

based on the Edge-Weighted Centroidal Voronoi Tessellation model.

We have proposed an inter-image propagated method for 3D grain images. 3D

grain images are represented by a sequence of serial-sectioned 2D images and an

initial 2D segmentation is propagated along this sequence. This method propagates

inter-slice consistency constraints for accurate and fast segmentation of 3D grains

in superalloy images. Specifically, the proposed method performs a 2D-constrained

EWCVT segmentation on each image slice using the segmentation of the previous slice

as the initialization, and during the clustering process the stable grain structure of

the previous slice is also preserved. On the first image slice, we use the segmentation

result of the EWCVT algorithm as the initialization. This way, the proposed method

4
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obtains a segmentation on the new image slice while simultaneously preserving the

segment correspondence with the previous image slice.

We have also proposed an intra-image propagated method for natural images/

videos. We construct multiscale superpixels/supervoxels to capture object bound-

aries. In this method, superpixels/supervoxels in a finer level is clustered to achieve

superpixels/supervoxels in a new coarser level. In the finest level, all the image

pixels/voxels are taken as the entities for HEWCVT clustering. This iterative clus-

tering process guarantees the hierarchical nested relations across different levels. In

HEWCVT method, the clustering energy consists of not only a term that measures

the color/feature between superpixels/supervoxels, but also a proposed edge term

that measures the boundary smoothness of the obtained superpixels/supervoxels.

With this edge term, the proposed HEWCVT method is able to produce super-

pixel/supervoxel boundaries better aligned with the underlying structural bound-

aries in each level. Examples of superpixels on 2D images are shown in Figure 1.2. In

the experiments, we justify the proposed method by qualitatively and quantitatively

comparing its performance with the performance of several other state-of-the-art su-

perpixels/supervoxels methods on three standard image/video datasets.

1.3 Dissertation Outline

This dissertation is organized as follows:

Chapter 2 introduces the general approach for propagated image segmentation,

i.e., incorporating propagation properties into existing image segmentation methods.

Related image segmentation methods have been reviewed, including methods without

propagation, inter-image propagation methods and intra-image propagation methods.

As the proposed methods are based on the Edge-Weighted Centroid Voronoi Tessel-

lation method, thus we also revisit its algorithms and 3D extensions.

Chapter 3 introduces the proposed inter-image propagated segmentation method

5
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for 3D grain images. We define the consistency constraint as preserving the stable

segment structure during the propagation and discuss proposed cluster initialization

satisfying such constraint. Algorithms to construct EWCVT with consistency con-

straint are developed. In the experiments, we apply the proposed method on a serial-

sectioned 3D grain image and compare its performance, in terms of both segmentation

accuracy and time efficiency, with the performance of several state-of-the-art 2D, 3D

and propagation methods.

Chapter 4 introduces the proposed intra-image propagated segmentation method

for constructing multiscale superpixels for natural images. The definition of pro-

posed edge smoothness energy for superpixel is discussed and iterative algorithms

to construct superpixels under different scales are developed. We also describe how

to extend proposed method to multiscale supervoxel construction for videos. In the

experiments, we justify the proposed method by qualitatively and quantitatively com-

paring its performance with the performance of several other state-of-the-art super-

pixels/supervoxels methods on three standard image/video datasets.

Finally, the summary of our achievements and potential future work are discussed

in Chapter 5.

6
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Chapter 2

Related Work

Propagated image segmentation methods usually extend existing image segmentation

methods with considering propagation related properties. For example, for the inter-

image propagation, the consistency among segmentations on neighboring images can

be considered as the propagation constraint and may be incorporated into existing

segmentation methods. Similar to the intra-image propagation, segmentation ob-

tained in one specific scale may be directly propagated for obtaining segmentations

on other scales using existing segmentation methods.

Therefore in this chapter, we first revisit several existing 2D and 3D image seg-

mentation methods without propagation in Section 2.1, including the Edge-Weighted

Centroid Voronoi Tessellation method that are utilized by the proposed methods.

Then we introduce a few state-of-the-art inter-image and intra-image propagation

methods in Section 2.2 and Section 2.3 respectively.

2.1 Image Segmentation Methods without Propagation

Graph-Based Image Segmentation (GB) In [18], an efficient graph-based im-

age segmentation method was proposed. The graph is initialized over the entire image,

where each pixel being its own unique region. Then a greedy algorithm iteratively

traverses the region edges in a sorted order by increasing edge weights (measured

the dissimilarity between two regions), and merge two regions if their edge weight

is smaller than the internal variation of both regions. Once two regions are merged,

their internal variation is also updated. The internal variation of a region is defined

7
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as the largest weight in the minimum spanning tree (MST) of the contained compo-

nents. Since the internal variation of a region with a single node is zero, then only

singleton regions can cause an initial merge. To alleviate that, the relaxed internal

variation RInt(R) is defined as

RInt(R) = Int(R) + δ(R), with δ(R) =
τ

|R| (2.1)

where τ is a constant parameter and |R| is the number of pixels in region R. The

τ controls the granularity of the final segmentation, where a larger τ usually results

in larger regions but with higher probabilities of containing incorrect segmentation

boundaries.

Since the simplicity and efficiency of the proposed graph-based framework, GB has

been widely applied for 2D image segmentation [18], and recently several inter-image

propagated segmentation methods extend it for obtaining 3D and video segmentations

[51, 50, 22]. Later in this section we will introduce its related extensions.

Global Probability of Boundary (gPb) A simple but effective boundary de-

tector named global probability of boundary was proposed in [3]. gPb estimates the

posterior probability of boundaries passing through the center of local patch based

features. Several color and gradient features have been extracted on the input image.

The boundary estimation is achieved by a simple logistic regression classifier.

Edge-Weighted Centroid Voronoi Tessellation (EWCVT) [44] proposed an

edge energy for the k-means clustering based segmentation method. By utilizing

the proposed edge energy, their method is able to directly measure the smoothness

of obtained boundaries, and thus achieves better results than the original k-means

method. In this work, two proposed propagated segmentation methods are based on

the EWCVT, thus we quickly revisit the EWCVT method below.

8
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Let U = {~u(i, j) | (i, j) ∈ I} denote the set of color or feature vectors of a 2D image

I (extension to 3D images will be discussed in Section 4.4), where ~u is the color/feature

function associated with I. In the experiments, we use the Lab color feature. For L

arbitrary color vectors W = { ~wl}L

l=1 (called generators), the corresponding Voronoi

tessellation of U is defined as V = {Vl}L

l=1 such that Vl = {~u(i, j) ∈ U | ‖~u(i, j)− ~wl‖ <

‖~u(i, j) − ~wm‖, m = 1, . . . , L and m 6= l}, where ‖ · ‖ is a distance function defined

on U. Given a weight or density function ρ defined on each pixel of I, we can further

define the centroid (i.e., the center of mass) of each Voronoi region Vl as ~w∗
l such that

~w∗
l = min

~w∈Vl

∑
~u(i,j)∈Vl

ρ(i, j)‖~u(i, j) − ~w‖2.

If the generators { ~wl}L

l=1 of the Voronoi regions {Vl}L

l=1 of U are the same as their

corresponding centroids, i.e.,

~wl = ~w∗
l , l = 1, . . . L,

then we call the Voronoi tessellation {Vl}L

l=1 a centroidal Voronoi tessellation (CVT)

of U. Since each Voronoi region Vl stands for a cluster in the color space we can easily

construct a corresponding partition of the 2D image I using the correspondence be-

tween pixel indices and color vectors through ~u. Let C = {Cl} L
l=1 denote a clustering

of the physical space of the image I, then the CVT clustering energy can be defined

as

Ecvt(C, W) =
L∑

l=1

∑

(i,j)∈Cl

ρ(i, j)‖~u(i, j) − ~wl‖2. (2.2)

The construction of CVTs often can be viewed as a clustering energy minimization

problem, i.e., solving min(C,W) Ecvt(C, W). The Lloyd method [14, 15] (equivalent to

the weighted k-means) has been widely used to compute CVTs, which is basically

iterations between constructing Voronoi regions and centroids. Assume that the Eu-

clidean distance is used for the color space, then we simply have the centroid of the

cluster Cl as ~w∗
l =

∑
(i,j)∈Cl

ρ(i, j)~u(i, j)/
∑

(i,j)∈Cl
ρ(i, j).

In order to enforce the smoothness of segment boundaries, a special edge energy

was proposed and added into the clustering energy [44, 45]. Specifically, let us define
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Figure 2.1: Boundary smoothness measurement for a pixel P . Each pixel is visualized
as a polygon and its shape stands for the pixel’s current cluster assignment.

an indicator function χ(i, j) : Nω(i, j) → {0, 1} on the neighborhood of pixel (i, j)

with radius ω as

χ(i,j)(i
′, j′) =





1 if π(i′, j′) 6= π(i, j)

0 otherwise

(2.3)

where π(i, j) tells the cluster index that (i, j) belongs to. Then the edge energy is

defined as

Eedge(C) =
∑

(i,j)∈I

∑

(i′,j′)∈Nω(i,j)

χ(i,j)(i
′, j′). (2.4)

Figure 2.1 illustrates the boundary smoothness measurement on a single pixel. It

has been shown in [44] that Eedge(C) is proportional to the total length of boundaries

in C in the limit. Finally, the edge-weighted CVT clustering energy can be defined as

Eewcvt(C, W) = Ecvt(C, W) + λEedge(W) (2.5)

where λ is a weight parameter balancing the clustering energy and the edge en-

ergy. Construction of EWCVTs is equivalent to solving the minimization problem

min(C,W) Eewcvt(C, W). An edge-weighted distance function from a pixel (i, j) to a

cluster center (generator) ~wk was derived for the energy Eewcvt as

dist((i, j), ~wk) =
√

ρ(i, j)‖~u(i, j) − ~wk‖2 + 2λñk(i, j) (2.6)
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Random Init
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Assign Pixels

to Clusters

Update

Clusters

Cluster Energy

Converged

Figure 2.2: Overview process of the EWCVT construction algorithm based on the
k-means type techniques.

Cluster Boundaries Segmentation Boundaries

Figure 2.3: Image segmentation boundaries can be determined as the boundaries
among constructed clusters.

where ñk(i, j) = |Nω(i, j)| − nk(i, j) − 1 with nk(i, j) =
∑

(i′,j′)∈Nω(i,j) π(i′, j′) 6= k.

Based on the above distance function, a few efficient algorithms for constructing

EWCVTs are suggested in [44] based on the k-means type techniques. In general, the

construction algorithm contains two steps:

1. Assignment step: pixels will be assigned to the closed cluster based on the

defined EWCVT distance (Eq. 2.6).

2. Update step: based on the assignment results, cluster centers or generators will

be updated according to the contained pixels.

The whole construction process is illustrated in Figure 2.2. Finally the image segmen-

tation boundaries can be determined as the cluster boundaries, as shown in Figure

2.3.
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EWCVT 3D Extensions Recently, two automatic 3D EWCVT-based methods

(MCEWCVT and CMEWCVT) [7, 5] were proposed for superalloy image segmen-

tation. These two clustering methods perform 3D segmentation by minimizing an

energy function which considers both voxel intensity similarity and the smoothness

of the segmentation boundaries. During the energy minimization, these two 3D clus-

tering methods enumerate every voxel and collect smoothness information around the

neighborhood of each voxel, which leads to very high algorithmic complexity. Addi-

tionally, the L∞-norm used in these two methods makes the centroids difficult to cal-

culate. Although these two EWCVT-based methods capture grain boundaries accu-

rately, as claimed in [7], they typically require 10 hours to segment a 3D 671×671×170

image. Furthermore, strong noise in the dense 3D image space is usually grouped into

separate clusters.

2.2 Related Inter-Image Propagation Methods

Stream Hierarchical Graph-Based Image Segmentation (StreamGBH) In

[51], the StreamGBH algorithm is proposed for segmenting streaming videos. Stream-

GBH segments a sequence of video frames by merging an over-segmentation on each

frame, guided by the segmentation on the previous frame. Without specific con-

straints on boundary smoothness, StreamGBH usually generates highly fragmented

and scattered segments.

Highly Consistent Sequential Segmentation In [13], the authors propagate

the result of previous video frame as the initialization for segmenting the current

frame. After a modified active-contour based segmentation, the algorithm further

merges and splits segments according to the partial shape matching across video

frames. However, this algorithm is not applicable to grain image segmentation for

two reasons: 1) The inter-slice resolution of a grain image is much lower than the
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intra-slice resolution which causes the 2D shape of a grain to vary substantially when

serial-sectioned by two consecutive slices, and 2) unlike video, which may contain

structures with different shapes, many grains in superalloy images bear very similar

shapes, and this may increase the ambiguity of the partial shape matching.

Based on above observations, a suitable inter-image propagated segmentation

method for grain images should 1) consider the consistency of segment structures

among adjacent images; and 2) smooth the segment boundaries.

2.3 Related Intra-Image Propagation Methods

Hierarchical Graph-Based Image Segmentation (GBH) [22] extends the gra-

ph-based image segmentation (reviewed in Section 2.1) for video segmentation. The

input video is considered as a single 3D image, which is different from the StreamGBH

method introduced previously. In order to capture object boundaries in different

scales, the authors proposed a hierarchical structure: in the lowest layer, objects in

the finest scale can be captured using the smallest τ value (defined in Eq. 2.1); while

in higher layers, τ will be scaled up in order to capture objects in coarser scales.

Segmentation results of one layer (represented by a region graph) are propagated and

utilized as the initialization for obtaining the segmentation on its above layer. The

authors also propose new definitions of edge weights between two regions based on

the dense optical flow, to utilize the motion information contained in the video.

Ultrametric Contour Map (UCM) Based on the boundaries detected by gPb

(reviewed in Section 2.1), [3] further proposed a multiscale hierarchical contour de-

tection method. Similar to the hierarchy proposed in GBH, the base level of the

UCM hierarchy represents weak contours, resulting in an oversegmentation, and up-

per levels respect only strong contours, resulting in an undersegmentation. Later a

hierarchy level can be selected based on additional knowledge. The UCM hierarchy is
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constructed also by a greedy graph-based region merging algorithm. Each iteration,

the algorithm merges the most similar regions.
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Chapter 3

Inter-Image Propagation

Given a sequence of images, the inter-image propagation methods propagate and

utilize the existing segmentation of an image to obtain new segmentation on adjacent

images. As discussed in Section 1.1, because its efficiency and accuracy, the inter-

image propagation is especially important for 3D material image segmentation, where

the 3D image is represented by a serial-sectioned high-resolution 2D image sequence.

Here we propose a EWCVT (introduced in Section 2.1) based inter-image propagation

method that preserves stable segment structures during the propagation. An overview

of the proposed propagation based method is illustrated in Figure 3.1, where an

existing segmentation is first propagated from previous image slices to the current

one, and then this segmentation is refined according to current image information

while preserving detected stable segment structures. For cases where the inter-image

distance is quite large and thus propagated stable segment structures may not easily

find its correspondence on the next slice, we model the problem in the multi-target

tracking framework, and further propose a non-rigid transformation based association

algorithm.

In this chapter, we first define the stable segment structure and describe its prop-

agation in Section 3.1, then we propose the cluster initialization method preserving

the propagated stable segment structure in Section 3.2, the proposed method of con-

structing EWCVT with consistency constraints is described in Section 3.3, the non-

rigid transformation based association algorithm is described in Section 3.4. Finally

we describe the experiment results and discussions in Section 3.5 and Section 3.6
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Existing Segmentation Stable Segment Structures Refined Segmentation

Propagate while Preserving Stable Structures

Figure 3.1: Overview of the proposed propagation method for constructing segmen-
tations for an image sequence.

respectively.

3.1 Stable Segment Structure and Its Propagation

Given two consecutive image slices I i and I i+1, their segmentation results can be

defined as Si = {si
1, . . . , si

mi
} and Si+1 = {si+1

1 , . . . , si+1
mi+1

} where mi and mi+1 are

the number of segments in I i and I i+1 respectively. The segment structure of the

segmentation Si on the image slice I i can be represented by a graph of segments in Si,

denoted as Gi (V i, E i), where each vertex in V i is a segment and the edge weights in E i

measure the strength of the adjacency of two neighbor segments (directly connected).

Typically, given two segments, we use the number of pixels located on the boundary

shared by them as their edge weight.

The stable segment structure of Si on I i can be defined as a connected sub-graph

Gi
∗ (V i

∗, E i
∗) of Gi. Specifically, it holds that

V i
∗ =

{
si

p ∈ V i |
∣∣∣si

p

∣∣∣ ≥ α
}

(3.1)

and

E i
∗ =

{
E i

(p,q) ∈ E i | E i
(p,q) ≥ β, Si

p, Si
q ∈ V i

∗

}
, (3.2)
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where the parameter α > 0 is the minimal size of segments that are defined as stable

ones, and the parameter β > 0 is the minimal length of boundaries that are stable.

In our 3D superalloy image segmentation problem, the stable segment structure of

Si on I i should be preserved in Si+1 on I i+1. Unstable segments and their adjacency,

caused by the difference of two consecutive image slices, are determined by the image

information on I i+1.

We first use the segmentation Si on the previous image slice I i as the initialization,

i.e., let Si+1 = Si. Then by combining Gi
∗ with the image information I i+1, we can

construct the segment structure G̃i+1
∗ on Si+1 that is invariant to the change of image

information from I i to I i+1. The vertexes in G̃i+1
∗ are the segments in Si+1 that are

corresponding with stable segments in Si, and the edges indicate corresponding stable

segments’ neighbor relationships. Thus G̃i+1
∗ can be viewed as a propagation of the

stable segment structure Gi
∗ from image slice I i to I i+1.

Specifically, we define the corresponding distance between a segment si
p on I i and

a segment si+1
q on I i+1 as

d(si
p, si+1

q ) =
|ui+1(si

p) − ui+1(si+1
q )|

|si
p ∩ si+1

q | (3.3)

where ui+1(si
p) denotes the average intensity of pixels inside segment si

p on I i+1:

ui+1(si
p) =

1

|si
p|

∑

(x,y)∈si
p

ui+1(x, y).

For each segment si
p ∈ V i

∗, we find its nearest segment si+1
q ∈ Si+1 and add si+1

q into

Ṽ i+1
∗ , with respect to the distance defined in Eq. (3.3), i.e.,

si+1
q = arg min

si+1
k

∈Si+1
d(si

p, si+1
k ). (3.4)

The intuition here is that two corresponding segments should be similar not only in

the intensity space but also in the spatial domain. Otherwise the segment adjacency

in Gi
∗ and G̃i+1

∗ are not consistent. The edges Ẽ i+1
∗ can be simply derived from Gi

∗.
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?
Propagated Structure Initialized SegmentationInitialized Clusters

Figure 3.2: An illustration of an incorrect clustering initialization which may not be
able to preserve the propagated segment structure. See text for detailed description.

3.2 Cluster Initialization Satisfying Consistency Constraint

Given the segmentation Si and the propagated stable segment structure Gi
∗, we now

compute a good initial clustering Di+1 = {Dl}L
l=1 of the image slice I i+1 for the

iterative construction of the EWCVT, and this initial configuration also must satisfy

the segment structure G̃i+1
∗ inherited from Gi

∗. An incorrect clustering initialization

may not preserve the propagated segment structure. For example, as shown in Figure

3.2, if the cluster initialization process assigns S1, S2 and S6 with the same cluster,

then the propagated segment structure is violated since all three segments are merged

into one and the segment structure is totally different from the propagated one.

Here, we proposed a CVT/k-means-type iterative process for initializing clusters

on Si+1 while preserving propagated segment structures. Specifically, we treat each

segment si+1
q ∈ Si+1 as a point and define its value as ui+1(si+1

q ) i.e., the average

intensity of pixels inside segment si+1
q . Then we can define a new intensity domain on

the segments as USi+1 =
{
ui+1(si+1

q ) | si+1
q ∈ Si+1

}
. Let D̂ = {D̂l}L

l=1 be a partition

of Si+1 into L clusters, then the CVT tessellation of Si+1 can be constructed based
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on the new average intensity according to the weighted CVT energy

Ê(W , D̂) =
L∑

l=1

∑

si+1
q ∈D̂l

∣∣∣si+1
q

∣∣∣
∣∣∣ui+1(si+1

q ) − wl

∣∣∣
2

. (3.5)

and its corresponding CVT distance is

d̂ist(si+1
q , wl) =

∣∣∣ui+1(si+1
q ) − wl

∣∣∣ . (3.6)

Notice that two initially neighbor segments may be merged into a single segment

if they are assigned to the same cluster. In this way the propagated stable segment

structure G̃i+1
∗ can not be preserved. In order to guarantee the resulting partition

preserves the segment neighboring relationship defined in Si+1, the clustering result

should satisfy

∀ si+1
k ∈ Nsi+1

q
, πi+1(si+1

q ) 6= πi+1(si+1
k ), (3.7)

where Nsi+1
q

denotes the neighbor segments of si+1
q and πi+1(si+1

q ) tells the index of

the Voronoi region the segment si+1
q belongs to. During the classic CVT construc-

tion based on
{
ui+1(si+1

q ) | si+1
q ∈ Si+1

}
, any new cluster assignment that violates

Eq. (3.7) should be prevented. The whole cluster initialization process is described in

Algorithm 3.1, which will be used as part of input for further computing the EWCVT

with consistency constraint.

3.3 Construction of EWCVT with Consistency Constraint

The initialization through Algorithm 3.1 guarantees the initialized partition Di+1 =

{Dl}L

l=1 (obtained through πi+1) preserves the propagated segment structure G̃i+1
∗ .

Now we present a modified EWCVT clustering algorithm such that the propagated

segment structure is preserved during the clustering process. Meanwhile new seg-

ments can be identified using the image information. The basic idea is, during the

EWCVT clustering process, 1) preventing any cluster assignment that breaks the

propagated segment structure G̃i+1
∗ ; and 2) adjusting the number of segments in

Si+1.
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Algorithm 3.1 (Cluster Initialization Satisfying Consistency Constraint)

Inputs: The image slice I i+1 and ui+1

Si: Segments of the image slice I i

πi: The cluster index function of the image slice I i

L: Number of clusters
niter: Number of iterations

0 Initialization: Create the stable segment structure Gi
∗ of Si. Set

Si+1 = Si and create G̃i+1
∗ for Si+1. Set πi+1 = πi.

1 FOR iter = 1, . . . , niter
2 FOR l = 1, . . . , L
3 Compute the centroid

wl =

∑
s

i+1
q ∈D̂l

|si+1
q |ui+1(si+1

q )
∑

s
i+1
q ∈D̂

|si+1
q |

4 FOR each si+1
q ∈ Si+1

5 Find the nearest wk ∈ {wl}L

l=1 to si+1
q

w.r.t. the distance function d̂ist(si+1
q , wk)

6 IF the relation (3.7) and G̃i+1
∗ are satisfied

7 Set πi+1(si+1
q ) = k

8 IF there is no cluster change among Si+1

9 Break
Output: The cluster index function πi+1 and {wl}L

l=1

Specifically, we only consider pixels located at the boundaries of stable segments in

Ṽ i+1
∗ and inside unstable segments Si+1−Ṽ i+1

∗ , denoted as (x, y) ∈ Ω. Those pixels can

only be assigned to a cluster which is physically connected to them, i.e., πi+1(x, y) ∈
{
πi+1(N(x,y))

}
where N(x,y) = {(x − 1, y), (x + 1, y), (x, y − 1), (x, y + 1)}. By check-

ing the propagated stable segments adjacent relations defined in G̃i+1
∗ , in each new

cluster assignment, we only allow assignments that preserve the stable segments adja-

cency. After each assignment, if the clusters of the surrounding segments are different

from the cluster of the center pixel, we identify this center pixel as a new segment

and add it into Si+1. The whole process can be described in Algorithm 3.2.

Notice that, we propagate the previous segmentation information by using Si as

the initialization directly. Therefore the segment indexes are consistent across image

slices. Furthermore, new identified segments will be also included in the updated Si+1

as described in Algorithm 3.2. Finally, we can easily correspond segments across 2D
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Algorithm 3.2 (EWCVT Construction Maintaining Consistency Constraint)

Inputs: The image slice I i+1 and ui+1

Si: Segments of the image slice I i

πi: The cluster index function of the image slice I i

L: Number of clusters
niter: Number of iterations

0 Initialization: Run Algorithm 3.1.
1 FOR iter = 1, . . . , niter
2 Construct the set of candidate pixels for

transferring, Ω from Si+1

3 FOR each (x, y) ∈ Ω
4 Find the nearest

wk ∈
{
wl | l ∈

{
πi+1

(
N(x,y)

)}}
to (x, y)

w.r.t. the distance function dist((x, y), wk)
5 IF no segments adjacency in G̃i+1

∗

is violated

6 Set k̃ = πi+1 (x, y), πi+1 (x, y) = k
7 Update wk and wk̃

8 IF πi+1 (x, y) /∈ πi+1
(
N(x,y)

)

9 Add a new segment that contains
(x, y) in Si+1

10 IF there is no cluster change among Ω
11 Break

Outputs: The final cluster index function πi+1 and
segmentation Si+1 of the image slice I i+1

image slices and then construct 3D segments.

3.4 Segment Consistency under Long Distance Propagation

In Section 3.1, for two consecutive image slices I i−1 and I i, we propagate the stable

segment structure Gi−1
∗ derived from segmentation Si−1 on I i−1, and utilize it to

guide the segmentation on the next slice I i. Later after constructing segmentation

on all slices, our goal is to associate all segments together in order to reconstruct the

underlying 3D object structures. The segment association problem can be illustrated

as in Figure 3.3.

However, when the inter-slice distance is large, the neighboring relations among
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Segmentation on Segmentation on

Figure 3.3: An Illustration of segment association problem for a set of segments
constructed on an image sequence. Our goal is to find the correspondence among
segments constructed on neighboring image slices, and eventually reconstruct the
underlying 3D object structure by associating all segments together.

Association

?

?

?

Figure 3.4: An illustration of correspondence problem for long distance propaga-
tion. Given a large inter-slice distance, it’s hard to find the correspondence between
propagated stable segment structure from previous image slice I i−1 and the segment
structure on image slice I i.

objects of interests may change a lot. And it becomes hard to find the correspondence

between propagated stable segment structure Gi−1
∗ on image slice I i−1 and segment

structure Gi on image slice I i. For example, as illustrated in Figure 3.4, because of

the change of neighboring relations among segments, it is difficult for a segment Si−1
a

in image slice I i−1 to find the correct corresponding segment in image slice I i. Thus,

the above mentioned segment consistency constraint proposed for Algorithm 3.2 may

lead to incorrect segmentation on image slice I i.

Naturally, we can model the finding of pairwise correspondences between segment
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structures constructed on two neighboring slices in an image sequence as a multi-

ple target tracking problem, where targets are segments or vertices of the segment

structure defined in Eq. (3.1). In order to handle the cases where existing segments

disappear due to object movement after long distance propagation or undersegmenta-

tion due to image noise, in this work we utilize a Kalman filtering based multi-target

tracking framework that models the segment movements and predicts the locations

of missing segments based on the motion model. We further improve the accuracy

of segment motion model by proposing a non-rigid transformation based association

method.

Kalman filter [47] is a type of recursive Bayesian filter and it is specialized for mod-

eling linear target movement with additive Gaussian noise. The 2D target movement

at image slice i is modeled as

xi = Axi−1 + wi−1

zi = Hxi + ri (3.8)

where the target state x = [cx, cy, vx, vy]⊤, (cx, cy) is center location of a target,

(vx, vy) is target velocities in horizontal and vertical directions respectively, z is

observed target center location, A =




1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1




is the state transition matrix,

H =




1 0 0 0

0 1 0 0


 is the observation model, w ∼ N (0, Q) is the transition noise,

and r ∼ N (0, R) is the observation noise. Then, the probabilistic state model can

be defined as:

23



www.manaraa.com

Figure 3.5: An illustration of the Kalman filter for recursively modeling target move-
ment using observed target locations and predicting missing target locations on an
image sequence.

x ∼ p
(
xi | xi−1

)
= N

(
Axi−1, Qi−1

)

z ∼ p
(
zi | xi

)
= N

(
Hxi, Ri

)
. (3.9)

Kalman filter for multi-target tracking contains three major steps: prediction,

association and correction. As illustrated in 3.5, at image slice i, the Kalman filter

first predicts the target state based on the movement model built upon previous slices,

then after associated observed targets with filters, the movement models of filters can

be corrected. These three steps are alternatively performed until reaching the end of

an image sequence.

In the prediction step, for a target q, the filter predicts its state xi
q on image slice

i based on the model trained from data in previous image slices:

p
(
xi

q | Zi−1
q

)
=

✂
∞

p
(
xi

q | xi−1
q

)
p
(
xi−1

q | Zi−1
q

)
dxi−1

q

= N
(
µi|i−1

q , P i|i−1
q

)
(3.10)

where Zi−1
q =

{
z1

q, z2
q, . . . , zi−1

q

}
are the observed target locations from image slice

1 to i − 1, and p
(
xi−1

q | Zi−1
q

)
= N

(
µi−1

q , P i−1
q

)
. Since the Kalman filter models
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noises, including both transition noise and observation noise, as additive Gaussian

distributions, µi|i−1
q is the state mean predicted on image slice i using the model

constructed on previous slice i − 1, and the covariance matrix P i|i−1
q measures the

uncertainty of the state prediction.

In the association step, given M predicted target states X i = {xi
1, xi

2, . . . , xi
M},

and N observed targets Zi = {zi
1, zi

2, . . . , zi
N}, the goal is to find the correspondence

between these predictions and observations. In this work, observations are the seg-

ments constructed on image slice I i. Notice that in most cases M 6= N since there

are usually false positive and/or false negative observations. Also, for long distance

propagation, because of large displacements due to targets movement, segment struc-

tures may change greatly, as illustrated in Figure 3.4. Thus, conventional one-to-one

matching algorithms, such as the Hungarian algorithm [26], may produce incorrect

associations since it enforces that every prediction must be associated with one obser-

vation. Erroneous associations result in inappropriate correction on the state models,

and eventually it will influence the effectiveness of the proposed segmentation method.

In the correction step, after associating the predicted state models X i with the

observed target locations Zi, for a target q, the state model can be updated through:

p
(
xi

q | zi
q, Zi−1

q

)
=

p
(
zi

q | xi
q

)
p
(
xi

q | Zi−1
q

)

p
(
zi

q | Zi−1
q

)

= N
(
µi|i

q , P i|i
q

)
(3.11)

In this work, we propose a non-rigid transformation based association algorithm.

The basic idea is to find non-rigid transformations that warp the predicted targets

towards observed target locations, which constructs the association between the pre-

dictions and the observations. In order to achieve that, we utilize the Thin-Plate

Spline Robust Point Registration (TPS-RPM) algorithm proposed in [9], where the

problem is formulated as minimizing the following energy function:
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ET P S−RP M (H, f) =
M∑

m=1

N∑

n=1

hmn ‖ zi
n − f

(
xi

m

)
‖2 +γ ‖ f ‖2 +

T
M∑

m=1

N∑

n=1

hmn log hmn − ς
M∑

m=1

N∑

n=1

hmn (3.12)

where H is the association matrix between M predictions and N observations, and the

non-rigid transformation function f is obtained by minimizing the thin-plate bending

energy:

ET P S (f) =
M∑

m=1

‖ zi
m − f

(
xi

m

)
‖2 +η

☎ 

(

∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2

 dxdy.

(3.13)

The minimization of ET P S−RP M is performed via an annealing process as proposed

in [9].

However, in practice, it is hard to find a single non-rigid transformation function

f for a large number of targets with different velocities in a long distance propa-

gation. A single function may not be sufficient to characterize complex non-rigid

transformations. We address this issue in a divide-and-conquer manner.

On image slice I i, given M predicted segment states X i =
{
xi

q

}M

q=1
, we first

group them into K groups. Specifically, each predicted state is considered as a four

dimension vector, i.e., x = [cx, cy, vx, vy]⊤ where (cx, cy) is center location of a target

and (vx, vy) is target velocities in horizontal and vertical directions respectively. Then

we perform the k-means algorithm on the set of predicated states. In the experiments,

we empirically set K = 10. Obtained prediction groups are visualized in different

colors on the left panel of Figure 3.6.

For each prediction group X , we look for the set of associated observations that

is able to achieve the smallest Thin-Plate Spline bending energy. Specifically, as

illustrated in Figure 3.7, we perform a sliding window search on observations of image

26



www.manaraa.com

Associated Prediction Associated Observation Unassociated Prediction Unassociated Observation

Predicted Segments Locations for Associated Predictions and Observations for

Figure 3.6: Divide-and-conquer approach to find associations between predicted tar-
gets and observed ones. On the left, we first divide predictions into compact groups,
and then, on the right, for each group, the association is constructed through the non-
rigid transformation based algorithm. Later, group-wise associations are combined
together. See text for detailed description.

Sliding window search on observationsBounding box built around a prediction group

Figure 3.7: Sliding window search for constructing the observation association. Red
window on the right indicates the set of associated observations that is able to achieve
the smallest TPS energy.
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Algorithm 3.3 (Group-wise Non-rigid Transformation based Association Algorithm)

Inputs: X i: M predicted segment states on image slice I i

Zi: locations of N observed segments
K: Number of prediction groups

1 Cluster X i into K groups using the k-means algorithm
2 FOR each prediction group X
3 Build an enclosing box BX

4 Enlarge BX into B̃X on all four directions
5 Obtain a set of sliding boxes by moving B̃X around its center

6 FOR each sliding box B̃+
X

7 Find association H between X and
observations located inside B̃+

X by minimizing Eq. (3.12)
8 Evaluate the TPS bending energy for H using Eq. (3.14)
9 Keep the association H∗

that achieves the smallest TPS bending energy
10 Merge associations obtained from all prediction groups together

Outputs: The association matrix between X i and Zi on image slice I i+1

slice I i with the objective looking for the association between predictions in X and

observations in the window that achieves the smallest TPS bending energy.

Given a set of associated predictions and observations H =
{
(xi, zi)q

}M

q=1
, the

TPS energy is given by

ET P S (H) =
1

8π

(
z⊤

x Lzx + z⊤
y Lzy

)
(3.14)

where (zx, zy) is the center location of observed target z, L is the M × M upper left

sub-matrix of




K P

P⊤ 0




−1

given K is the pairwise distance matrix for all predictions in group X , and P =

(1, xx, xy) where (xx, xy) is the center locations (in row vector) of predicted target x.

Starting with an enclosing rectangle box BX = [xtl, ytl, xbr, ybr] for X where

(xtl, ytl) and (xbr, ybr) are the top-left and the bottom-right corner points of box

BX respectively, we first enlarge BX by ∆t = 5px in all four directions, i.e., B̃X =
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[xtl − ∆t, ytl − ∆t, xbr + ∆t, ybr + ∆t]. Then we move the box around its center, with

range ∆x ∈ [−10, 10], ∆y ∈ [−10, 10] and the step length 10. For each obtained

box, we find the association between predictions in X and observations inside the

box by minimizing Eq. (3.12), and evaluate the TPS bending energy using Eq. (3.14).

Among all sliding boxes, we keep the one that is able to achieve the smallest TPS

bending energy by associating predictions with inside observations. Then we consider

obtained association as the prediction-observation correspondence for group X .

Finally, by combining association results of all prediction groups together, we

are able to obtain the correspondence between predicted targets and observed ones,

i.e., associating propagated stable segment structure Gi−1
∗ with constructed segment

structure Gi. The whole algorithm is summarized in Algorithm 3.3.

By stacking a set of associated 2D segmentation slices, we are able to reconstruct

the 3D structures, as illustrated in Figure 3.8.
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Figure 3.8: Illustrations of the reconstructed 3D structures. The structures are obtained by finding the correspondence among
a set of 2D segmentations using proposed non-rigid transformation based association algorithm.
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3.5 Experiments

In this section, we first describe the test dataset, parameter settings, and evaluation

criterion used in the experiments. Then we compare the proposed method with several

2D/3D segmentation algorithms in terms of accuracy and running time. Finally, we

discuss how the accumulated propagation error affects the segmentation accuracy of

the proposed method when segmenting a long sequence of 2D image slices.

IN100 Dataset

The experiments are conducted on the IN100 dataset1 which contains 170 sequential

2D image slices of a superalloy material sample. These image slices are obtained by

photographing (using microscope) the top surface of a superalloy sample block during

a top-to-bottom abrading process.

Each slice in the IN100 dataset contains 4 gray-scale images taken under differ-

ent microscope configurations. For the proposed method, we combine them into a

single 4-channel image, analogous to typical RGB 3-channel images and use L2-norm

as the distance metric. We do not suppress any channel, which is different from

the L∞-norm used in MCEWCVT [7]. For comparison algorithms that cannot han-

dle multi-channel images directly, we first apply such algorithms to each of the four

gray-scale images independently. We then combine these independent segmentations

into an additional fifth segmentation, either using the logic OR operation (for solid

boundary segmentation algorithms, e.g. the NormalizedCuts [39] algorithm), or as-

signing the maximum probability boundary (pb) value to each pixel (e.g. for the gPb

[3] algorithm). For each such comparison algorithm, we report the result (out of the

above five results) which yields the best performance.

1Provided by our material scientist collaborates and can be downloaded at
http://www.bluequartz.net/Data/.
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Evaluation Metric

We use the boundary-overlap criterion suggested in the Berkeley segmentation bench-

mark [30] to evaluate the results quantitatively. Specifically, detected segmentation

boundaries are compared with the ground-truth boundaries to calculate precision,

recall and the F-score

F-score = 2 · Precision × Recall

Precision + Recall
.

As mentioned before, in the proposed method we use the segmentation obtained by

the EWCVT algorithm on the first slice as an initialization, propagating it to segment

the remaining 169 slices sequentially. We evaluate the segmentation accuracy on all

170 slices.

Parameter Settings

For the proposed method, there are two key parameters that can be tuned: the radius

ω of the local smoothness region and the edge weight λ. We performed a grid search

over this parameter space using the whole dataset and selected ω = 4 and λ = 30

which achieved the best performance. Additionally, we set the number of clusters in

the color space as k = 40. For the remaining parameters, the minimum size of stable

segments α and the minimum length of stable boundaries β, are set according to the

average grain size: α = 80 and β = 5.

Comparison with 2D Segmentation Methods

We compare the proposed method with six automatic 2D segmentation algorithms,

including MeanShift [10], the graph-based (GraphBased) algorithm of [18], SRM

[33], gPb [3], and NormalizedCuts [39]. Additionally, we also compare the proposed

method with the original EWCVT [44] algorithm on 2D image slices. The Normal-
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Methods Precision Recall F-score

2D
Methods

EWCVT [44] 0.838385 0.962131 0.896005
MeanShift [10] 0.911927 0.844106 0.876707

GraphBased [18] 0.704163 0.928424 0.800891
SRM [33] 0.81018 0.800006 0.805061
gPb [3] 0.828988 0.866076 0.847126

NormalizedCuts [39] 0.736609 0.691646 0.71342

3D/Propagated
Methods

MCEWCVT [7] 0.845894 0.927918 0.885009
3D Levelset [48] 0.739025 0.581001 0.650554

3D Watershed [31] 0.864594 0.589135 0.700767
StreamGBH [51] 0.454185 0.792653 0.577479

Proposed 0.957377 0.896125 0.925739

Table 3.1: Quantitative comparison of 2D/3D/Propagated segmentation methods on
the IN100 dataset.
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Figure 3.9: An illustration of quantitative comparison with 2D/3D/Propagated seg-
mentation methods on the IN100 dataset.
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Methods MCEWCVT [7] StreamGBH [51] Proposed

Time (s) 37243.2 8808.7 7651.7

Table 3.2: Comparison on running times of 2D/3D/Propagated segmentation meth-
ods on the IN100 dataset.

izedCuts algorithm requires the number of desired segments, which we set to the

number of ground truth segments in this dataset. Parameters of other algorithms are

set either to their default values, or the setting that provides the best performance

from a coarse grid search.

The quantitative results are illustrated in Figure 3.9, and specific numbers are

shown in the middle six rows of Table 3.1, from which we can see that the original 2D

EWCVT already achieves a very good performance with an F-score of 89.6%, while

the proposed EWCVT-based propagation method further significantly improves the

segmentation accuracy by another 3% to 92.5%. This indicates that, aside from

the excellent performance of the EWCVT clustering algorithm, the consistency con-

straints in the proposed method indeed boost the performance further.

Comparison with 3D/Propagated Segmentation Methods

We compare the proposed method with the MCEWCVT algorithm in [7], the 3D

levelset algorithm [48], the 3D watershed algorithm [31] and the StreamGBH algo-

rithm in [51]. We select StreamGBH because it is a propagation-based algorithm and

it achieves state-of-the-art performance on video segmentation tasks [51], which is

similar to the 3D grain image segmentation application. Another related work is the

algorithm in [13], however the authors have not released the implementation of this

algorithm.

For the MCEWCVT algorithm, we use the parameter configuration provided in

the original paper [7]. For the 3D levelset algorithm, the number of seeds are the

same as the number of grains contained in the ground truth segmentation, and the
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seeds are evenly distributed in the 3D space. For StreamGBH, we set the number of

consecutive image slices involved in the propagation (i.e., the parameter “range”) to

be 2, which is equivalent to only using the previous image slice to do propagation, as

in the proposed method. After performing a coarse grid search, other parameters of

StreamGBH are set to be: nhie = 10, c = 60, creg = 200, min = 100 and σ = 0.8.

The quantitative results are illustrated in Figure 3.9, and specific numbers are

shown in the bottom two rows of Table 3.1, the proposed method clearly outper-

forms the comparison algorithms. MCEWCVT under-performs because it groups

strong noise in the dense 3D image space into separate clusters. StreamGBH shows

lower performance because it lacks structure consistency constraints and boundary

smoothness in the propagation, leading to isolated and jagged boundaries.

Moreover, in order to demonstrate the computational efficiency of the proposed

method, we also compare its running time with that of the MCEWCVT and the

StreamGBH algorithms. All these algorithms are implemented in C/C++ and their

running times are shown in the last column of Table 3.2. The proposed method ex-

hibits the fastest running time, with a speedup of 5× compared with the MCEWCVT

algorithm.

Qualitative Comparisons

Qualitative segmentation results on three consecutive image slices of both 2D im-

age segmentation methods and 3D/Streaming segmentation methods are shown in

Figures 3.10, 3.11 and Figures 3.12, 3.13 respectively. We can clearly see that the

segmentation from the proposed method aligns with grain boundaries much better

than the segmentation from the comparison algorithms. For 2D comparison algo-

rithms, without considering inter-slice correspondence, they often produce isolated

fragments inside a grain. In contrast, the proposed method maintains the consis-

tency and correspondence among grains across image slices. For the 3D algorithms,
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Figure 3.10: Qualitative comparisons of the four 2D/Propagated image segmentation
methods (Proposed, EWCVT, GraphBased and gPb) on three consecutive image
slices from the IN100 dataset. From the top to the bottom are the original image
with ground truth boundaries and results of different methods.
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Figure 3.11: Qualitative comparisons of the four 2D/Propagated image segmentation
methods (Proposed, MeanShift, SRM and NormalizedCuts) on three consecutive im-
age slices from the IN100 dataset. From the top to the bottom are the original image
with ground truth boundaries and results of different methods.
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Figure 3.12: Qualitative comparisons of the three 3D/Propagated image segmentation
methods (Proposed, MCEWCVT and 3D Levelset) on three consecutive image slices
from the IN100 dataset. From the top to the bottom are the original image with
ground truth boundaries and results of different methods.
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Figure 3.13: Qualitative comparisons of the three 3D/Propagated image segmentation
methods (Proposed, 3D Watershed and StreamGBH) on three consecutive image
slices from the IN100 dataset. From the top to the bottom are the original image
with ground truth boundaries and results of different methods.
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Figure 3.14: The F-score on each slice (left) during propagation. The sharp drop is
caused by a corrupted slice (right) in the original IN100 dataset.

compared with the proposed method, they are sensitive to strong noises in the dense

3D space. For StreamGBH, without considering the structure consistency and the

boundary smoothness, its results contain many fragments along grain boundaries.

Propagation Error Analysis

Intuitively, the segmentation error accumulates when the segmentation propagates

through a large number of slices. Therefore, we may expect a monotonic decrease of

the segmentation accuracy with more steps of propagation. However, as shown in the

top panel of Figure 3.14, the segmentation accuracy only oscillates occasionally during

the propagation. The main reason is that, aside from the propagation of structural

consistency constraints, the proposed method also includes a EWCVT clustering

process to refine the segmentation using the image information when processing a

new slice. Also note hat the F-score on the first image is relatively low. This is

due to the EWCVT result being used as the initialization. Even from this imperfect

initialization, the proposed method is able to improve the performance by considering

both structure and image information in propagation. Similarly, one slice of corrupted
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or highly noisy image, as shown in the bottom panel of Figure 3.14, has little effect

on the segmentation performance on the other slices because of the use of structure

constraints in the proposed method.

Experiments on Synthesized Dataset

In order to verify the robustness of the proposed method, in this section, we compare

its performance with it of several other comparison algorithms, on two synthesized

datasets. In the following, we first propose a texture based algorithm to generate

synthesized superalloy data, and then report quantitative evaluation results on two

constructed datasets.

Synthesized Data Construction

Since acquiring real data from material samples is laborious and usually it requires

advanced equipments in order to serial section the sample, synthesized data has

been widely utilized in the material science for structural and physical properties

analysis. Here, we utilize one recently popular tool developed by material scien-

tists, named DREAM.3D [21], for constructing two 1-channel synthesized superalloy

datasets: IN100-300 with dimension of 300×300×300 and IN100-900 with dimension

of 300 × 300 × 900.

Proposed synthesizing process contains two major steps: 1) Constructing 2D im-

age sequences of serial sectioned 3D synthesized grains; 2) Simulating intensities of

the sectioning surface under microscope for each grain.

3D synthesized grains are constructed using DREAM.3D based on statistics col-

lected from the real IN100 dataset. Specifically, we set the total number of grains as

2, 000 which is similar as in IN100, and the grain sizes are sampled from a Log-Norm

distribution obtained from the grain sizes in IN100. Similar approach has been ap-

plied in [4]. Given a synthesized 3D grain volume, we split it along the z-axis and
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Slice 10 Slice 20 Slice 40

Figure 3.15: Illustrations of constructed 2D image slices of serial sectioned 3D syn-
thesized grains.

represent it as a sequence of 2D image slices. Constructed 2D image sequences of

serial sectioned 3D synthesized grains are illustrated in Figure 3.15.

The intensity for each grain is simulated through a non-parametric texture syn-

thesis process [16]. Specifically, we first randomly crop 184 80×80 image patches from

the real IN100 dataset. Notice that, cropping only be conducted within grains in or-

der to avoid producing patches crossing grain boundaries. Figure 3.16 illustrates a set

of sampled image patches. Then, for each synthesized grain, we fill its 2D sectioned

surface with one randomly selected image patch using a texture synthesis algorithm

proposed in [16]. Figure 3.17 shows a few examples of constructed 2D image slices

for both two synthesized datasets.

Parameter Settings

Similar as for the real IN100 dataset, for the proposed method, we performed a grid

search over the parameter space using the whole dataset, and selected ω = 4 and λ = 5

which achieved the best performance. Compared with the real IN100 dataset, we use

a smaller ω because the image scale becomes smaller from 671 × 671 to 300 × 300,

and ω measures the area around objects for neighboring smoothness. We set the

number of clusters in the color space as k = 120. The size of stable segments α and
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Figure 3.16: A set of image patches randomly sampled from the IN100 dataset.

Slice 10 Slice 20 Slice 40

Figure 3.17: 2D image slices of serial sectioned 3D synthesized grains, after filling
with sampled patches.

the minimum length of stable boundaries β are set as α = 80 and β = 15. For the

comparison algorithms, we have performed coarse grid searches, and report their best

performances using obtained parameter settings.

Quantitative Results

Quantitative results for synthesized IN100-300 and IN100-900 datasets, are reported

in Table 3.3 and Table 3.4 respectively. We also illustrate the results in Figure 3.18
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Methods Precision Recall F-score

2D
Methods

EWCVT [44] 0.681457 0.920491 0.78314
MeanShift [10] 0.944532 0.734022 0.826077

GraphBased [18] 0.965788 0.640095 0.769914
SRM [33] 0.992404 0.526994 0.688419
gPb [3] 0.83115 0.719009 0.771023

NormalizedCuts [39] 0.715336 0.82262 0.765236

3D/Propagated
Methods

MCEWCVT [7] 0.819851 0.716402 0.764644
3D Levelset [48] 0.676494 0.714562 0.695007

3D Watershed [31] 0.879059 0.60455 0.716408
StreamGBH [51] 0.604455 0.46982 0.528701

Proposed 0.947256 0.865704 0.904646

Table 3.3: Quantitative comparison of 2D/3D/Propagated segmentation methods on
the IN100-300 dataset.

Methods Precision Recall F-score

2D
Methods

EWCVT [44] 0.683125 0.91619 0.782675
MeanShift [10] 0.948733 0.732826 0.826919

GraphBased [18] 0.987743 0.470167 0.637082
SRM [33] 0.99107 0.540443 0.699461
gPb [3] 0.827414 0.718046 0.76886

NormalizedCuts [39] 0.712434 0.821097 0.762916

3D/Propagated
Methods

MCEWCVT [7] 0.838043 0.712298 0.770071
3D Levelset [48] 0.640096 0.707052 0.67191

3D Watershed [31] 0.921154 0.516437 0.661826
StreamGBH [51] 0.591641 0.540961 0.565167

Proposed 0.945981 0.860409 0.901168

Table 3.4: Quantitative comparison of 2D/3D/Propagated segmentation methods on
the IN100-900 dataset.

and Figure 3.19 as well. From the results, we can see that almost all evaluated meth-

ods achieve lower performance than it in the real IN100 dataset. The reason is that

the real IN100 dataset provides 4 different channels for easier and better locating

grain boundaries than the constructed 1-channel synthesized datasets. The proposed

method has achieved the best performance among all comparison 2D/3D/Stream al-

gorithms on both two synthesized datasets. This suggests that, the proposed method

is robust for even more challenging datasets.
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Figure 3.18: An illustration of quantitative comparison with 2D/3D/Propagated seg-
mentation methods on the IN100-300 dataset.

Experiments on Long Distance Segment Propagation

In this section, we evaluate the performance of proposed non-rigid transformation

based association method for long distance segment structure propagation. Then we

compare its performance with it of several state-of-the-art association algorithms.

In the following, we introduce the dataset utilized for long distance propagation

evaluation, the measurement metric, and report quantitative evaluation results.

Fiber Dataset

As described in Section 3.5, and shown in Figure 3.10, 3.11, 3.12, and 3.13, in the

IN100 dataset, the variation of segment structures between two neighboring image
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Figure 3.19: An illustration of quantitative comparison with 2D/3D/Propagated seg-
mentation methods on the IN100-900 dataset.

slices is quite subtle. Thus the IN100 dataset may not be sufficient to verify the

effectiveness of long distance association algorithms. Therefore, we select another

serial-sectioned material image dataset provided by our collaborators, for long dis-

tance propagation evaluation.

The new dataset, named fiber dataset, contains 100 sequential 2D image slices of

a fiber reinforced composite material sample. Each image slice consists of 6 × 6 = 36

individual 1292 × 968 image tiles. So the total number of images in this dataset is

100 × 36 = 3, 600. Sample slices from different tiles are shown in Figure 3.20, where

these white ellipses are the objects of interest, and they are 2D serial sectioning

surfaces of fibers. Along the image sequences, this dataset also provides detected 2D

fiber segments on each slice, as illustrated in Figure 3.20.
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Figure 3.20: Illustrations of the fiber dataset. For each image slice, we also visualize
provided fiber detections right next to each image, highlighted by red ellipses.
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We can consider these detected fiber segments as grain segments in the IN100

dataset, then the stable segment structure constructed as a segment graph, and its

propagation are same as for the grain image sequence. However, the major difference

is that, compared with the IN100 dataset, the variation of segment structures among

image slices is larger. For example, as shown in Figure 3.20, the structure of detected

fibers in slice 20 and in slice 40 is quite different due to the fiber movement. Thus

we propose to utilize the fiber dataset to evaluate the performance of long distance

segment structure propagation.

To further investigate the robustness of a algorithm under different propagation

distances, we construct a set of additional fiber datasets by manually increasing the

inter-slice distance, and report evaluation results on each of them. Specifically, given

a integer s ∈ [0, 100], we can select a subset of slices by skipping every s intermediate

slices. For example, for s = 1, the constructed subset sequence is {I0, I2, I4, . . . , I98};

for s = 4, the constructed subset sequence is {I0, I5, I10, . . . , I90}. In the experiments,

we set s ∈ {0, 1, 2, . . . , 9} and report evaluation results of different algorithms under

each slice skipping setting.

Evaluation Metric

As discussed in Section 3.4, it is naturally to model the segment structure propagation

as a multi-target tracking problem. Therefore, we quantitatively measure the prop-

agation performance using one standard multi-target tracking metric, the multiple

object tracking accuracy (MOTA) [4], which is defined as

MOTA = 1 −
∑

i (mi + fpi + mmei)∑
i gti

(3.15)

where mi, fpi and mmei are the number of missing detections, of false positive detec-

tions, and of mis-matched associations, respectively, on image slice i. gti is the total
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number of annotated ground truth detections on slice i. Thus, higher MOTA value

indicates there is less tracking error in the obtained results.

Quantitative Comparisons

We compare the proposed non-rigid transformation based propagation method with

four state-of-the-art multi-target tracking algorithms from both computer vision and

biomedical communities, including, integer linear programming based tracking (DP-

NMS) [34], motion dynamics based tracking (SMOT) [12], continuous energy based

tracking (CEM) [32], and individual detection linking using the Viterbi algorithm

(KTH) [29]. Parameters of all comparison algorithms are to their default values. No-

tice that, since the fiber dataset we utilized already provides object detection results,

therefore, all involved algorithms share the same set of detections as input.

The quantitative results are illustrated in the left of Figure 3.21, from which we

can see that, for the original fiber dataset, the proposed method outperforms other

comparison algorithms, and is able to achieve more than 99% accuracy; while with

the increasing of propagation distance, the proposed method still achieves higher

performance than others. This indicates that, proposed non-rigid transformation

based method indeed helps find correspondence between propagated stable segment

structure and constructed segment structure especially for two image slices that are

far away from each other. We also report the MOTA comparison results on a few

individual tiles in Figure 3.22, where the proposed non-rigid transformation based

method outperforms others by significant margins when increasing the number of

skipped slices.

Moreover, we also compare the running time of different methods in order to

demonstrate the computational efficiency of the proposed method, as illustrated in

the right panel of Figure 3.21. We can see that the proposed algorithm achieves

around a speedup of 9× compared with the CEM algorithm.
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Figure 3.21: Quantitative comparison of different multi-target tracking methods for
long distance segment structure propagation. MOTA is shown in left, and average
running time (after log transformation) is shown in right.
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Figure 3.22: Quantitative comparison of different multi-target tracking methods for
long distance segment structure propagation on a few individual tiles.
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3.6 Discussion

In this chapter, we proposed an Edge-Weighted Centroid Voronoi Tessellation based

method that can propagate structural consistency constraints from slice to slice, which

is used to automatically segment 3D grain images. As a volumetric segmentation al-

gorithm, the proposed method can automatically extract grain structures on all the

slices, starting from the segmentation on the first slice, which can be constructed by

any automatic 2D segmentation algorithm. The proposed propagation-based method

is able to: 1) segment a large number of superalloy image slices efficiently, 2) pre-

serve structural consistency across slices, and 3) easily correspond the segments across

slices. For cases where the inter-slice distance is too large to find correspondence of

propagated stable structures on the next slice, we further proposed a non-rigid trans-

formation based association method. We conducted experiments on a 3D superalloy

image dataset with 170 image slices. To verify the effectiveness of the proposed asso-

ciation method, we conducted experiments on a serial-sectioned fiber image dataset

with 3, 600 image slices. Both qualitative and quantitative results indicate that the

proposed method outperforms the comparison algorithms and is robust even when

propagated through a large number of slices, and in the presence of strong noise and

corruption.
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Chapter 4

Intra-Image Propagation

For the intra-image propagation, the existing segmentation of an image is propa-

gated and utilized for obtaining segmentation of the same image but under different

conditions, for example, in different scales. As discussed in Section 1.1, in order to

capture boundaries of objects with multiple scales in natural images, hierarchical or

multiscale image segmentation is usually utilized. Here we propose a multiscale su-

perpixel/supervoxel method, based on the EWCVT method introduced in Section

2.1, to capture object boundaries under different scales.

In this chapter, we first describe the proposed Hierarchical Edge-Weighted Cen-

troidal Voronoi Tessellation (HEWCVT) for superpixel construction in Section 4.1, its

extension to supervoxels in Section 4.4, then analyze its complexity and convergence

condition in Section 4.3, discuss the importance of the simple-connectivity property

for superpixels/supervoxels together with the proposed enforcement approach in Sec-

tion 4.2, and finally describe the experiment results and discussions in Section 4.5

Input Image Finest Scale Coarser Scale

Merge while smoothing neighboring areas of superpixels

Figure 4.1: Overview of the proposed HEWCVT method for constructing superpix-
els/supervoxels in multiple scales.
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and Section 4.6 respectively.

4.1 Hierarchical Edge-Weighted Centroidal Voronoi Tessellation

The proposed hierarchical method begins with an oversegmentation on pixels using

the a modified EWCVT algorithm that strictly enforces the simple-connectivity of

superpixels [45]. This oversegmentation is taken as the finest level of superpixels in

the hierarchy. For the higher levels, we merge finer level superpixels with similar

color features, meanwhile preserve superpixel connectivity and enforce the boundary

smoothness of superpixels. An overview of the proposed HEWCVT method is shown

in Figure 4.1.

(a) Boundary smoothness measurement for a
pixel P . Each pixel is visualized as a polygon
and its shape stands for the pixel’s current clus-
ter assignment.

(b) Boundary smoothness measurement for a
superpixel S. Each polygon represents a super-
pixel and the shape of its center marker stands
for the superpixel’s current cluster assignment.

Figure 4.2: Boundary smoothness measurement illustrations. Dash lines are clus-
ter boundaries. Pink curve indicates the local neighborhood area for smoothness
measurement.
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Superpixels Construction in the Finest Level

At the finest level we deal with the generation of superpixels directly from the image

pixels. Let M1 be the desired number of superpixels. Similar to the VCells algorithm

proposed in [45], we first use the classic K-means with the Euclidean norm on pixel

coordinates I, to generate M1 simply-connected and quasi-uniformly distributed su-

perpixels on the input image. We also set ρ ≡ 1 here. Next we apply the VCells

algorithm to the initial superpixel configuration where we only allow transferring of

boundary pixels between neighbor clusters at each iteration. The whole algorithm is

described in Algorithm 4.1. If π(i, j) is different from the label of at least one of its 4

neighbors, i.e., (i±1, j) or (i, j ±1), we say (i, j) is a boundary pixel, and denote B as

the set of all boundary pixels. We remark that each pixel moving between neighbor

clusters in Algorithm 4.1 will decrease the energy Eewcvt, thus Algorithm 4.1 guaran-

tees monotonic decreasing of Eewcvt along the iterations till it terminates, see [44] for

detailed discussions.

There is no guarantee to preserve the simple-connectivity property of each segment

in the algorithm above. Thus in the end we perform a filtering step to further en-

force the simple-connectivity of superpixels, which is widely used in other superpixel

algorithms [1, 27, 43, 45] and will be described in Section 4.2.

Superpixels Construction in Higher Levels

At a higher level q (q > 1), we already have a superpixel from the previous level q −1,

S = {Sm}Mq−1

m=1 . Given the desired number of superpixels Mq (Mq < Mq−1) in Level

q, we will merge adjacent superpixels to reach that goal according to minimization

of certain energy function. Each superpixel is treated as a point and we will cluster

them into Mq simply-connected parts, where Mq < Mq−1 is the desired number of

superpixels in Level q. This way we can easily build a tree structure for superpixels

between these two levels.
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Algorithm 4.1 (Pixel-Level Superpixel Algorithm)

Input: The target 2D image I and the color function ~u
M1: Number of desired superpixels
niter: Maximum number of iterations

0 Initialization: Construct the initial superpixels
of I, {Cl}M1

l=1 using the k-means with the
Euclidean distance and the feature function ~u+.

1 FOR each Ck ∈ {Cl}M1
l=1

2 Compute centroid ~wk = 1
|Ck|

∑
(i,j)∈Ck

~u(i, j)

3 FOR iter = 1 to niter
4 Create the set of boundary pixels B
5 FOR each (i, j) ∈ B
6 Find the closest centroid to the pixel (i, j)

~wk ∈ { ~wl | l ∈ π(N4(i, j))}
w.r.t. the edge-weighted distance (Eq. (2.6))

7 IF π(i, j) 6= k

8 Set k̃ = π(i, j) and π(i, j) = k
9 Update ~wk, ~wk̃

10 IF there is no cluster index change
11 Break
12 Perform the simple-connectivity filtering

Output: The cluster/superpixel index function π

The initialization step is different from that in the finest level. The most intu-

itive idea is to apply the k-means clustering on the set of average coordinates of all

superpixels constructed in the previous level. However, the merged superpixels may

not be simply-connected. Instead, we first build a superpixel graph G = (V, E, E),

where V consists of all the previous level’s superpixels {Sm}Mq−1

m=1 and E is the set of

all pairs of neighbor superpixels. The edge weight for (Sa, Sb) ∈ E is defined as

E(Sa, Sb) =
‖~u(Sa) − ~u(Sb)‖

max(Sa,Sb)∈E ‖~u(Sa) − ~u(Sb)‖
(4.1)

where ~u(S) = 1
|S|

∑
(i,j)∈S ~u(i, j) denotes the average color vector of all the pixels

belonging to the superpixel S. Then the superpixel graph G will be partitioned

into Mq subgraphs which are considered as initialized superpixels at level q. The

proposed HEWCVT method will refine initialized superpixels later. Therefore, any

graph partition algorithm can be used for this initialization. Based on algorithm
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efficiency and code availability, we choose the METIS algorithm [24] here.

We define the density function ρ on S as ρ(Sm) = |Sm|, i.e., the number of pixels

contained in the superpixel Sm ∈ S. Let Csp = {Csp
l }Mq

l=1 be a clustering of S and

W = {~wl}Mq

l=1 be an arbitrary set of color vectors. Then we define the new CVT

clustering energy as

Ecvt−sp(Csp, W) =
Mq∑

l=1

∑

S∈C
sp

l

ρ(S)‖~u(S) − ~wl‖2. (4.2)

In order to measure the boundary length (or the smoothness) of superpixels, we

propose an edge energy for the superpixel image. As illustrated in Figure 4.2b, we

define the local neighborhood Nω(S) for a superpixel S ∈ S as

Nω(S) =
⋃

(i,j)∈B(S)

Nω(i, j) − S

where B(S) denotes the set of all boundary pixels of the superpixel S. Then we define

the edge energy as

Eedge−sp(Csp) =
∑

S∈S

∑

(i,j)∈Nω(S)

ΓS(i, j) (4.3)

where ΓS(i, j) : Nω(S) → {0, 1} is an indicator function, similar as χ(i, j) in Eq. 2.3,

and is defined by

ΓS(i, j) =





1 if π(i, j) 6= π(S)

0 otherwise

where π(S) returns the cluster index of the superpixel S in Csp.

Finally, the edge-weighted CVT clustering energy for superpixels can be defined

as

Eewcvt−sp(Csp, W) = Ecvt−sp(Csp, W) + λEedge−sp(Csp). (4.4)

We can derive the distance from a superpixel S to a cluster center ~wk corresponding

to the above energy as

dist(S, ~wk) =
√

ρ(S) ‖ ~u(S) − ~wk ‖ 2 + 2λñk(S) (4.5)
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Algorithm 4.2 (Higher Level Superpixel Merging Algorithm)

Input: The superpixel image S and the color function ~u
Mq: Number of desired superpixels
niter: Maximum number of iterations

0 Initialization: Construct the superpixel graph G
and partition S into Mq simply-connected regions {Csp

l }Mq

l=1 using
METIS [24]

1 FOR each Csp
k ∈ {Csp

l }Mq

l=1

2 Compute centroid ~wk =

∑
S∈C

sp

k

ρ(S)~u(S)
∑

S∈C
sp

k

ρ(S)

3 FOR iter = 1 to niter
4 Create the set of boundary superpixels B(S)
5 FOR each S ∈ B(S)
6 Find the closest centroid to S

~wk ∈ {~wl | l ∈ π(N (S)}
w.r.t. the edge-weighted distance (Eq. (4.5))

7 IF π(S) 6= k

8 Set k̃ = π(S) and π(S) = k
9 Update ~wk, ~wk̃

10 IF there is no cluster index change
11 Break
12 Perform the simple-connectivity filtering

Output: The cluster/superpixel index function π

where ñk(S) measures the number of inconsistent pixels in the neighborhood of the

superpixel S: ñk(S) = |Nω(S)| − nk(S) with nk(S) =
∑

(i,j)∈Nω(S) π(i, j) 6= k.

Furthermore, in order to keep superpixels simply connected, we follow the idea

in the finest level (Section 4.1), i.e., only superpixels located at cluster boundaries

will be considered during the clustering, and we only allow cluster index change

among adjacent clusters. The whole algorithm is described in Algorithm 4.2. We

again remark that similar to Algorithm 4.1, Algorithm 4.2 guarantees monotonic

decreasing of Eewcvt−sp along the iterations till it terminates.

Adaptive Determination of the Edge Energy Weight

The energy weight parameter λ defined in Eqs. (2.5) and (4.4) balances the ratio

between the CVT clustering energy Ecvt (or Ecvt−sp) and the edge energy Eedge (or
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Eedge−sp). However, these energies are varying from different images/videos and/or

change along different scale levels. Especially in video segmentation, different videos

also have variant number of frames and frame rates. Thus a fixed λ is obviously

inappropriate. Instead we aim at controlling the ratio between Ecvt and λEedge.

Therefore, given an predetermined energy ratio θ that Ecvt

λEedge
= Ecvt−sp

λEedge−sp
= θ, we can

adjust λ adaptively by setting λ(iter) =
E

(iter−1)
cvt

θE
(iter−1)
edge

at each iteration in Algorithm 4.1

and λ(iter) =
E

(iter−1)
cvt−sp

θE
(iter−1)
edge−sp

in Algorithm 4.2.

4.2 Simple-Connectivity Enforcement

Although we have enforced that the pixel/superpixel transferring can only occur

among adjacent clusters, due to the image noises, few superpixels may still break into

several disconnected parts and/or contain holes (especially in 3D cases). Thus after

the HEWCVT clustering process, we merge small (|S| ≤ ε) and isolated superpixels

into their surroundings. Similar post-step has been applied in several state-of-the-art

superpixel/supervoxel methods [1, 27, 43, 45].

Specifically, there are two cases: 1) in the finest level, for each pixel p in a small

or isolated superpixel S, we first locate its nearest neighbor pixel p′ in surrounding

superpixels S ′ and then merge p into S ′; 2) in the higher levels, we can associate each

pixel p in S with a surrounding superpixels as in the finest level, and this association

can be viewed as a vote from p to a surrounding superpixel. We merge S into S ′ that

has the majority vote.

4.3 Complexity and Convergence Analysis

The Finest Level Superpixel Algorithm 4.1 is equivalent to the VCells, and it contains

two major steps: 1) initializing boundary pixels B which takes O (N) where N is

the total number of image pixels; 2) EWCVT algorithm only considering boundary

pixels which takes O
(
K

√
M1 · N

)
where K is the total number of iterations and M1
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Figure 4.3: An illustration of energy convergence of the proposed HEWCVT, with
θ = 1.5, when constructing superpixels on a sample image.

is desired number of superpixels in the finest level. We refer the reader to [45] for

more details about the complexity analysis of VCells.

Excluding the cost of boundary pixels initialization, for the Higher Level Super-

pixel Merging Algorithm 4.2, as we only consider the boundary superpixels, thus the

computational cost in each iteration is O
(
nB(S) · nB

)
, where nB(S) is the number of

boundary superpixels, and nB is the number of boundary pixels utilized for measuring

proposed superpixel boundary smoothness. Each merged superpixel should contain

approximately Mq−1

Mq
superpixels from the previous level, where Mq−1 is the number

of superpixels in the previous level and Mq is desired number of merged superpixels

in current level, thus there are
√

Mq−1

Mq
boundary superpixels. Similarly the number

of boundary pixels in a superpixel can be approximated by
√

N
Mq−1

. Therefore,
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O
(
nB(S) · nB

)
∼ O

(
Mq ·

√
Mq−1

Mq

·

√
N

Mq−1

)
∼ O

(√
Mq · N

)
.

For K iterations, we have O
(
K
√

Mq · N
)
. Overall, the complexity of proposed

HEWCVT method is O
(
N + K

√
M · N

)
= O (N) where M is desired number of

superpixels in a hierarchy level.

Both of Algorithm 4.1 and Algorithm 4.2 will converge to a local minimum of the

defined HEWCVT energy. We illustrate the value change of the total energy, the

color energy and the edge energy along iterations on a sample image in Figure 4.3. In

this example, we set the desired ratio between the color energy and the edge energy,

i.e., θ = 1.5. We can see that, all three energies decrease quickly and converge to local

minimal values, while the ratio between the color energy and the edge energy always

remains the same as the desired value. For mathematical proofs on EWCVT-based

energy convergence, please see [44] for details.

4.4 Extension to Supervoxels

We can easily extend the proposed hierarchical method into 3D case. The major

difference is the neighbor system among voxels and supervoxels. Instead of 4-neighbor

system in 2D case, we use 6-neighborhood for the voxel level oversegmentation. We

note that more complex neighbor systems also can be used.

Another issue is that in the 2D case we assume the units of all coordinate directions

are the same. For 3D images this assumption is still valid in most situations. However,

for video data, the unit of the temporal direction could be different from those of

spatial axises. Therefore for video data, one could use I3D = H ∗ (i, j, k)T where

H =




1 0 0

0 1 0

0 0 γk




is a scaling matrix and γk is data dependent. In the video experiments,

we just simply used H = I3×3 and it worked fine for the test video data.
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4.5 Experiments

We tested the proposed HEWCVT method on three standard image/video segmen-

tation benchmarks which have been widely used for evaluating the performance of

superpixels/supervoxels:

• the Berkeley Segmentation Dataset and Benchmark (BSDS300) [30], which con-

sists of 300 color images of dimensions 481 × 321 or 321 × 481. Each image has

been annotated by different subjects, thus obtained ground truth segments are

at varying levels of granularity.

• the Weizmann image dataset [2], which consists of 200 color images of size

approximately 300 × 225. Different from the BSDS300 dataset, subjects only

annotated contours of the foreground objects. Based on the number of objects

in an image, the whole dataset consists of two parts: images with single object

(W1) and images with two objects (W2).

• the Xiph.org video dataset [8], which consists of 8 color videos of approximately

85 frames (240 × 160) each. The videos have been labeled frame by frame with

temporal consistency taken into consideration.

Sample images overlaid with corresponding ground-truth boundaries are shown in

Figure 4.4.

Evaluation Metrics

In order to quantitatively evaluate the performance of superpixels/supervoxels, we

used human labeled segmentation as the ground truth because the superpixel/super-

voxel boundaries should well align with the structural boundaries. Based on the

ground truth, we applied three standard superpixel/supervoxel measurements: bound-

ary recall, under-segmentation error and segmentation accuracy [1, 43, 51]. Note that
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Figure 4.4: Sample images and their human annotated boundaries for superpixel and
supervoxel evaluations.

in this paper we propose a superpixel/supervoxel method. Therefore, we use super-

pixel/supervoxel metrics instead of image segmentation metrics, such as metrics from

the Berkeley segmentation dataset. For each of the three metrics we report the aver-

age values on each dataset.

Boundary Recall

This metric measures the fraction of ground truth boundaries that fall within a certain

distance t of at least one superpixel/supervoxel boundary. It is formulated as

BR =

∑
p∈B(g) I

[
minq∈B(s) ‖ p − q ‖< t

]

|B(g)| (4.6)

where B(g) is the union set of ground truth boundaries, B(s) is the union set of

superpixel/supervoxel boundaries and I is an indicator function that returns 1 if a
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Figure 4.5: Illustrations of three superpixel/supervoxel evaluation metrics.

superpixel/supervoxel boundary pixel is close enough to the ground truth boundaries.

We set t = 2 for both images and videos as in [1] and [51]. In general the larger the

number of superpixels/supervoxels, the more boundaries, and the better the boundary

recall. We illustrate this metric in the left panel of Figure 4.5.

Undersegmentation Error

This metric measures the fraction of superpixels/supervoxels that is leaked across

the boundary of the ground-truth segments. For each ground truth segment gi, we

calculate the “bleeding” area of superpixels/supervoxels that overlap with gi. It is

formulated as

UE =

∑G
i=1

[
(
∑

sj :sj∩gi>r | sj |)− | gi |
]

∑G
i=1 | gi | (4.7)

where sj

⋂
gi is the overlapping between a superpixel/supervoxel sj and a ground

truth segment gi. r is set to be 5% as in [1]. In general superpixels/supervoxels that

tightly fit the ground truth segments result in a lower value of UE. We illustrate this

metric in the middle panel of Figure 4.5.

63



www.manaraa.com

HEWCVT VCells[45] GraphCut[43] SLIC[1] LRW[38]
BSDS300 1.42s 1.32s 5.39s 0.27s 1090.55s

W1 0.24s 0.62s 1.97s 0.13s 1160.83s
W2 0.23s 0.55s 2.16s 0.12s 854.57s

HEWCVT GBH[22] SWA[37]
Xiph.org 0.54s 0.47s 0.13s

Table 4.1: Average running time of different superpixel/supervoxel algorithms on
several image/video datasets.

Segmentation Accuracy

This metric measures the fraction of a ground truth segment that is correctly classified

by the superpixels/supervoxels, and we report the average fraction over all the ground

truth segments. It is formulated as

SA =
1

G

G∑

i=1

∑
sj :sj∩gi>c | sj |

| gi | (4.8)

where the overlapping ratio c specifies whether a ground truth segment is correctly

classified or not and we set c = 95% as in [1, 43]. We illustrate this metric in the

right panel of Figure 4.5.

In the following, we evaluate the proposed method under different parameter set-

tings, discuss the principles of determining parameters, and compare the performance

with 6 well known superpixel/supervoxel algorithms quantitatively and qualitatively.

We do not include comparisons with other superpixel/supervoxel algorithms because

according to the recent superpixel/supervoxel benchmark surveys [1, 51] the algo-

rithms we have compared with have achieved the state-of-the-art performance and

they have been widely used in different applications already.

We implemented the proposed method and the benchmark evaluation algorithm

in C/C++. For the comparison algorithms, we used implementations published by

their authors. All experiments were conducted on a Linux workstation with 8 GB

memory and an Intel processor clocked at 2.4GHz with 8 cores. Average running time
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Mq 4096 2048 1024 512 256 128
Image (2, 1.5) (2, 1000) (2, 1000) (2, 1000) (2, 1000) (2, 1000)

Mq 1000 . . . 100
Video (2, 1) (2, 1) (2, 1)

Table 4.2: Parameter settings (ω, θ) that achieve the highest performance on each
hierarchy level in the grid search on the validation sets.

of evaluated superpixel/supervoxel algorithms on all image/video datasets is shown in

Table 4.1. Proposed HEWCVT method achieved comparable time efficiency among

other algorithms in both superpixel and supervoxel constructions.

Parameters

There are two major parameters that can be tuned in the proposed HEWCVT

method:

1. ω, which defines the radius of the 2D/3D local neighborhood region of a super-

pixel/supervoxel, as illustrated in Figure 4.2;

2. θ, the ratio between the CVT clustering energy and the edge energy, as defined

in Section 4.1.

For the METIS algorithm utilized for initializing superpixel/supervoxel graphs in

higher levels, we follow its default parameter settings, i.e., performing a k-way graph

clustering with at most 10 iterations. We stop both Algorithm 4.1 and Algorithm

4.2 after niter = 30 and niter = 200 iterations for superpixel and supervoxel con-

structions respectively, since in practice we are already able to achieve converged

HEWCVT energies.

To determine the values of ω and θ, we perform a grid search on validation

sets, which consist of around 30% images and videos randomly selected among three

datasets, and later we choose the parameter settings that achieve the highest perfor-

mance across the three evaluation metrics. For the comparison algorithms, we did
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the same grid search on the validation sets and reported performance on testing sets

using obtained parameter settings.

It’s impossible to enumerate all possible values and combinations of these two

major parameters, thus we only tested values within certain ranges: ω ∈ {2, 4, 8}, θ ∈

{1, 1.5, 2, 4, 10, 200, 500, 1000}. For the hierarchy structure, we set Mq ∈ {4096, 2048,

1024, 512, 256, 128} for the superpixel construction on images and Mq ∈ {1000, 900,

. . . , 100} for the supervoxel construction on videos. For each hierarchy level, we pick

the results with the highest performance in the previous level as the initialization.

We list the parameter settings that achieve the highest performance on the validation

sets in Table 4.2, and later we report performance of proposed method on testing sets

using these fixed settings.

We also investigate the influence of different parameter values on the super-

pixel/supervoxel construction in the proposed HEWCVT method. Figure 4.6 illus-

trates the superpixel performance of the proposed HEWCVT under different (ω, θ)

on the image validation set. From where we can see that, larger ω decreases the

performance while larger θ always leads to better performance. The reason is that,

compared with the whole image, the average size of constructed superpixels is quite

small. Thus given a large local neighborhood region (large ω), the edge energy will

dominant the total HEWCVT energy. Without balancing the energy ratio between

the color energy Ecvt and the weighted edge energy λEedge (requiring large θ), over-

smoothed superpixel boundaries are not well adherent to the structural boundaries.

Similar phenomenon has been observed on the video validation set as well.
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Figure 4.6: Superpixel performance, in terms of boundary recall, undersegmentation error and segmentation accuracy, of the
proposed HEWCVT under different values of ω and θ in one hierarchy level on the image validation set. Better view in color.
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Superpixel Evaluation

In order to evaluate the proposed HEWCVT method on the superpixel construction,

we further compare it with other 4 state-of-the-art superpixel algorithms, including

the VCells algorithm [45], a MRF model based algorithm (GraphCut) [43], the SLIC

algorithm [1] and the LRW algorithm [38]. We do not include other superpixel algo-

rithms such as the Turbopixel algorithm [27], and other segmentation based methods

such as the NormalizedCut algorithm [36], Meanshift [10] and Quickshift [42] al-

gorithms, into our comparison because: according to [1] SLIC outperforms many

state-of-the-art superpixel and segmentation algorithms on the Berkeley dataset and

we have included SLIC into our comparison.

We apply these superpixel algorithms on the two testing datasets: the BSDS300

dataset and the Weizmann dataset (including two parts: W1 and W2), and discuss

both quantitative and qualitative results. Other than the standard superpixel metrics,

we also evaluate the constructed superpixels in term of semantic image segmentation

accuracy using the algorithm described in [20] and [19], where the constructed su-

perpixels are utilized as an initialization for a CRF based pixel labeling algorithm.

Similar evaluation approach has been used in [1] as well.

Quantitative Results

Quantitative results of superpixel construction for all the datasets are shown in Figure

4.7, 4.8, and 4.9 respectively. For the BSDS300 dataset, we can see that, proposed

HEWCVT clearly achieves better performance in terms of both three metrics com-

pared with other state-of-the-art methods. For both W1 and W2 datasets, EWCVT

based methods: HEWCVT and VCells, outperforms other comparison algorithms,

and HEWCVT achieves comparable performance with VCells on the W1 dataset.

But for the W2 dataset, when the number of superpixels is small, VCells achieves

better performance than HEWCVT in terms of undersegment error and segmentation
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Figure 4.7: Superpixel evaluation of HEWCVT, VCells, GraphCut, SLIC and LRW
on the BSDS300 dataset.

accuracy. The major reason is that, in the Weizmann dataset, only object’s external

contours have been annotated as the ground-truth, as shown in Figure 4.4, thus it

favors superpixels constructed directly on a coarse scale without considering object’s

internal structures in finer scales. The proposed HEWCVT, however, achieves coarse

scale superpixels using superpixels in finer scales, which leads to uneven external con-

tours and lower performance than VCells that produces superpixels directly on the

coarse scales.
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Figure 4.8: Superpixel evaluation of HEWCVT, VCells, GraphCut, SLIC and LRW on the W1 dataset.
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Figure 4.9: Superpixel evaluation of HEWCVT, VCells, GraphCut, SLIC and LRW on the W2 dataset.
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Figure 4.10: Qualitative comparisons of the four superpixel methods (HEWCVT, VCells, GraphCut, SLIC, LRW) on two images
from the BSDS300 dataset. The numbers at the left indicate the desired number of superpixels. Better view in color.
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Accuracy HEWCVT VCells[45] GraphCut[43] SLIC[1] LRW[38]
MSRC[37] 76.2% 75.4% 73.2% 76.9% 74.6%

VOC2007[17] 25.9% 24.9% 23.9% 24.6% 24.7%

Table 4.3: Class-average segmentation accuracies on the MSRC dataset and the PAS-
CAL VOC2007 dataset using superpixels constructed by different algorithms.

Qualitative Results

Sample results of constructed superpixels from all the datasets are shown in Fig-

ure 4.10 and 4.11. We can see that, compared with the four comparison methods,

HEWCVT produces more uniform superpixels in the finest scale while catches struc-

tural boundaries more accurately in the coarsest scale.

Application on Semantic Image Segmentation

In order to comprehensively evaluate the effectiveness of constructed superpixels using

different algorithms, we further investigate the performance of applications utilizing

those produced superpixels, particularly, we focus on the application of superpixel

based semantic image segmentation. Similar evaluation approach has been used in

[1] as well.

In the semantic image segmentation task, the goal is to assign image pixels with

predefined object class labels, e.x., tree, chair, and person. As illustrated in Figure

4.12, human annotated object labels for image pixels are visualized in different color.

We investigate the semantic segmentation accuracy of two recently proposed semantic

segmentation methods, [37] and [19], on two widely used datasets, [37] and [17],

respectively.

Both two algorithms are superpixel based approach, where they first represent

an image with superpixels, and then infer semantic labels using statistical models

on superpixels. Thus, given the same semantic segmentation method, by plugging

in superpixels constructed from different algorithms, we can evaluate the superpixel
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Figure 4.11: Qualitative comparisons of the four superpixel methods (HEWCVT,
VCells, GraphCut, SLIC, LRW) on two images from the W1 and W2 datasets. The
numbers at the top indicate the desired number of superpixels. Better view in color.
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MSRC[37] 591 296 295 21

VOC2007[17] 632 422 210 20

Figure 4.12: Sample images, human annotated semantic pixel labels, and statistics
for the MSRC dataset and the PASCAL VOC2007 dataset.

performance in terms of semantic segmentation accuracy. The semantic segmentation

accuracy is defined as the average accuracy for all predefined classes on all testing

image pixels.

As listed in Table 4.12, the MSRC image dataset [37] contains 591 color images

of size approximately 320 × 213 and 21 predefined labels. The PASCAL VOC2007

image dataset is larger and more complicate than the MSRC dataset, which contains

632 color images of size approximately 500 × 375 and 20 predefined labels. For the

experiment setting, we fixed the number of desired superpixels as 512 and 2048 for

the MSRC dataset and the VOC2007 dataset respectively.

The class-averaged semantic segmentation accuracies for two datasets using su-

perpixels constructed from different algorithms are listed in Table 4.3, and visualized
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Figure 4.13: Illustrations of quantitative evaluation on the semantic image segmen-
tation task using superpixels constructed by different algorithms. Results for the
MSRC dataset are shown in the left, and results for the PASCAL VOC2007 dataset
are shown in the right.

in Figure 4.13. From which we can see that, for the MSRC dataset the proposed

HEWCVT method achieves comparable class-average segmentation accuracy as the

state-of-the-art method SLIC, and outperforms other four superpixel methods; for

the complicated PASCAL VOC2007 dataset, the proposed HEWCVT method out-

performs all comparison methods.

75



www.manaraa.com

Number of Supervoxels

3
D

 B
o

u
n

d
a

ry
 R

e
c
a

ll

200 300 400 500 600 700 800 900
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

HEWCVT

GBH

SWA

Number of Supervoxels

3
D

 U
n

d
e

rs
e

g
m

e
n

ta
ti
o

n
 E

rr
o

r

200 300 400 500 600 700 800 900
6

8

10

12

14

16

18

20

22

24

HEWCVT

GBH

SWA

Number of Supervoxels

3
D

 S
e

g
m

e
n

ta
ti
o

n
 A

c
c
u

ra
c
y

200 300 400 500 600 700 800 900

0.65

0.7

0.75

0.8

0.85

HEWCVT

GBH

SWA

Figure 4.14: Supervoxel evaluation (w/ connectivity enforcement) of GBH, SWA, and HEWCVT on the Xiph.org dataset.
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Figure 4.15: Supervoxel evaluation (w/o connectivity enforcement) of GBH, SWA, and HEWCVT on the Xiph.org dataset.
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Supervoxel Evaluation

Similar to the superpixel evaluation, we compare the supervoxel construction perfor-

mance of the proposed HEWCVT against two state-of-the-art supervoxel algorithms:

the graph based hierarchical algorithm (GBH) and the weighted aggregation algo-

rithm (SWA). All three algorithms consider a video as an entire 3D volume. We

quantitatively and qualitatively evaluate these supervoxel algorithms on the Xiph.org

video dataset. However, two comparison algorithms, GBH and SWA, do not enforce

the connectivity of each supervoxel, which results in supervoxel fragments in the 3D

space. For a fairer comparison, we apply the same connectivity enforcement (ǫ = 15)

to remove such fragments and then count each connected component as a separate

supervoxel in evaluating GBH and SWA in this paper. Later we will still present

the evaluation results without applying the connectivity enforcement and discuss the

supervoxel fragment problem.

Quantitative Results

Quantitative results on the Xiph.org video dataset are shown in Figure 4.14. In

terms of 3D boundary recall, proposed HEWCVT achieves comparable performance

to GBH and better performance than SWA. When the number of supervoxels is very

large, supervoxels generated by GBH become highly scattered with a large number of

disconnected supervoxel fragments. Therefore GBH achieves better boundary recall.

However, highly scattered supervoxels lead to lower accuracy in catching structural

boundaries, which is measured by other two metrics. For the other two metrics, 3D

undersegmentation error and 3D segmentation accuracy, HEWCVT clearly performs

better than both GBH and SWA.
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Video HEWCVT GBH SWA Video HEWCVT GBH SWA

Figure 4.16: Qualitative comparisons of the three supervoxel methods (HEWCVT, GBH, SWA) on four videos. On each video,
the number of supervoxels generated by these three methods are similar for fairer comparison. Neighboring supervoxels are
shown in different color.
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Figure 4.17: An illustration of the dis-connectivity issue in GBH. Constructed su-
pervoxels in two adjacent video frames are visualized with specific colors. Each su-
pervoxel from GBH actually contains many disjoint fragments. Highlighted by black
bounding boxes. Better view in color.

Qualitative Results

Qualitative results of constructed supervoxels from different methods are illustrated

in Figure 4.16. We can see that, with a similar number of supervoxels, proposed

HEWCVT can produce more uniform supervoxels to catch the structural boundaries,

but without generating many small fragments, when compared with GBH and SWA.

Discuss on Connectivity Enforcement

Unlike the proposed HEWCVT method and previous superpixel/supervoxel algo-

rithms, recent supervoxel algorithms, GBH and SWA, do not enforce the simple-

connectivity among constructed supervoxels, which leads to many disjoint fragments.

An example is shown in Figure 4.17, where GBH generates 35 supervoxels on a video

and these 35 supervoxels actually consist of 15226 connected components. Given that

the three evaluation metrics are dependent on the number of supervoxels, it is clearly

unfair and inaccurate to count only 35 supervoxels when evaluating the results in

Figure 4.17. Therefore, in the previous evaluation, for GBH and SWA, we apply the

same connectivity enforcement (ǫ = 15) as for the proposed HEWCVT to merge such

fragments, thus the performance curves of GBH and SWA reported in Figure 4.14
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are different from those reported in [51]. Specifically, as described in Section 4.2,

given small and/or isolated supervoxels constructed by GBH and SWA, we merge its

voxels into neighboring supervoxels based on coordinate distances between voxel and

supervoxel centers.

Here in Figure 4.15, we also report the evaluation results without applying the

simple-connectivity enforcement for both three supervoxel algorithms, which is the

same setting as in [51, 50]. By comparing them with the results illustrated previously

in Figure 4.14 (with connectivity enforcement), we can see that, after applying the

connectivity filtering:

• The performance of the proposed HEWCVT does not change too much, which

indicates that the proposed multiscale supervoxel clustering process already

preserves very well the simple-connectivity property of constructed supervoxels.

However the performance of other two methods varies a lot, which is caused by

merging fragmenting supervoxels into their neighbors.

• Since the voxel based connectivity enforcement produces more boundaries, the

3D boundary recall of GBH and SWA increases after the filtering. However,

after merging isolated supervoxels, the area of supervoxels that leak across the

boundary of the ground-truth segments increases, and the number of supervox-

els that have large portion overlapping with ground-truth segments decreases,

thus the undersegment error increases and the segment accuracy decreases.

Based on above observations, we can conclude that the proposed HEWCVT super-

voxel method is able to achieve better performance than GBH and SWA, and mean-

while it can also preserve the simple-connectivity property as much as possible, which

is important for 3D image segmentation.
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4.6 Discussion

We have proposed a hierarchical edge-weighted centroidal Voronoi tessellation method

for generating multiscale superpixels/supervoxels. In the finest scale, superpixels/

supervoxels are constructed directly from pixels/voxels. In the higher scales, larger

size superpixels/supervoxels are obtained by clustering superpixels/supervoxels in the

lower levels. The clustering energy involves both the color feature similarity and the

boundary smoothness of superpixels/supervoxels. The obtained structural bound-

aries are consistent among superpixels/supervoxels in different scales. We have inves-

tigated the performance of the proposed method under different parameter settings,

and discussed the principles of determining parameters. Quantitative and qualitative

results from various experiments show that the HEWCVT method can achieve su-

perior or comparable performances over several current state-of-the-art algorithms.

In the future, we will further investigate utilization of motion based features in the

clustering energy function for supervoxel construction and also consider extending

the proposed method to handle streaming videos.
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Chapter 5

Conclusion

In this work, we propose two propagated image segmentation methods for effec-

tive segmenting 3D material images and natural images/videos respectively, i.e., the

Edge-Weighted Centroid Voronoi Tessellation with Propagation of Consistency Con-

straint (CCEWCVT) and the Hierarchical Edge-Weighted Centroidal Voronoi Tes-

sellation (HEWCVT). The CCEWCVT is able to efficiently obtain segmentations

on a sequence of 2D serial-sectioned images of 3D material samples by propagating

a 2D segmentation from slice to slice, i.e., the inter-image propagation. Experi-

ments conducted on a real high-resolution 3D grain image dataset indicate that,

compared with several 2D, 3D and propagated algorithms, the proposed method

achieves the best performance in terms of both segmentation accuracy and time effi-

ciency. The HEWCVT, on the other hand, is proposed to capture object boundaries

using superpixels/supervoxels in different scales on natural images/videos. Superpix-

els/supervoxels are constructed iteratively by propagating segmentations on the finest

scale to coarser scales. Both quantitative and qualitative evaluation results on sev-

eral standard datasets show that the proposed HEWCVT method achieves superior

or comparable performances to other state-of-the-art algorithms.
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